New Quadrilateral Mixed Finite Elements
نویسندگان
چکیده
In this paper, we introduce a new family of mixed finite element spaces of higher order (k ≥ 1) on general quadrilateral grids. A typical element has two fewer degrees of freedom than the well-known RaviartThomas finite element RT[k], yet enjoys an optimal-order approximation for the velocity in L 2-norm. The order of approximation in the divergence norm is one less than the velocity, as is common to all other known elements, except for a recent element introduced by Arnold et al. [SIAM J. Numer. Anal., 42 (2005), pp. 2429–2451]. However, we introduce a local post-processing technique to obtain an optimal order in L2-norm of divergence. This technique can be used to enhance the result of RT[k] element as well, and hence, can be easily incorporated into existing codes. Our element has one lower order of approximation in pressure than the RT[k] element. However, the pressure also can be locally post-processed to produce an optimal-order approximation. The greatest advantage of our finite element lies in the fact that it has the fewest degrees of freedom among all the known quadrilateral mixed finite elements and thus, together with the post-processing techniques, provides a very efficient way of computing flow variables in mixed formulation. Numerical examples are in quite good agreement with the theory even for the case of almost degenerate quadrilateral grids.
منابع مشابه
Stable and unstable cross-grid PkQl mixed finite elements for the Stokes problem
In this paper we develop and analyze a family of mixed finite element methods for the numerical solution of the Stokes problem in two space dimensions. In these schemes, the pressure is interpolated on a mesh of quadrilateral elements, while the velocity is approximated on a triangular mesh obtained by dividing each quadrilateral into four triangles by its diagonals. Continuous interpolations o...
متن کاملQuadrilateral H(div) Finite Elements
We consider the approximation properties of quadrilateral finite element spaces of vector fields defined by the Piola transform, extending results previously obtained for scalar approximation. The finite element spaces are constructed starting with a given finite dimensional space of vector fields on a square reference element, which is then transformed to a space of vector fields on each conve...
متن کاملPublications of Douglas N. Arnold
• Mixed methods for elastodynamics with weak symmetry. • Mixed finite elements for elasticity on quadrilateral meshes. • Finite element differential forms on curvilinear cubic meshes and their approximation properties. Numer. • Nonconforming tetrahedral mixed finite elements for elasticity. • Mixed finite element approximation of the vector Laplacian with Dirichlet boundary conditions. Math. • ...
متن کاملTwo New Quadrilateral Elements Based on Strain States
In this paper, two new quadrilateral elements are formulated to solve plane problems. Low sensitivity to geometric distortion, no parasitic shear error, rotational invariance, and satisfying the Felippa pure bending test are characteristics of these suggested elements. One proposed element is formulated by establishing equilibrium equations for the second-order strain field. The other suggested...
متن کاملTorsion Analysis of High-Rise Buildings using Quadrilateral Panel Elements with Drilling D.O.F.s
Generally, the finite element method is a powerful procedure for analysis of tall buildings. Yet, it should be noted that there are some problems in the application of many finite elements to the analysis of tall building structures. The presence of artificial flexure and parasitic shear effects in many lower order plane stress and membrane elements, cause the numerical procedure to converge in...
متن کامل